Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
mSystems ; 9(2): e0104323, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38294254

ABSTRACT

Animals and their associated microbiota share long evolutionary histories. However, it is not always clear how host genotype and microbiota interact to affect phenotype. We applied a hologenomic approach to explore how host-microbiota interactions shape lifetime growth and parasite infection in farmed Atlantic salmon (Salmo salar). Multi-omics data sets were generated from the guts of 460 salmon, 82% of which were naturally infected with an intestinal cestode. A single Mycoplasma bacterial strain, MAG01, dominated the gut metagenome of large, non-parasitized fish, consistent with previous studies showing high levels of Mycoplasma in the gut microbiota of healthy salmon. While small and/or parasitized salmon also had high abundance of MAG01, we observed increased alpha diversity in these individuals, driven by increased frequency of low-abundance Vibrionaceae and other Mycoplasma species that carried known virulence genes. Colonization by one of these cestode-associated Mycoplasma strains was associated with host individual genomic variation in long non-coding RNAs. Integrating the multi-omic data sets revealed coordinated changes in the salmon gut mRNA transcriptome and metabolome that correlated with shifts in the microbiota of smaller, parasitized fish. Our results suggest that the gut microbiota of small and/or parasitized fish is in a state of dysbiosis that partly depends on the host genotype, highlighting the value of using a hologenomic approach to incorporate the microbiota into the study of host-parasite dynamics.IMPORTANCEStudying host-microbiota interactions through the perspective of the hologenome is gaining interest across all life sciences. Intestinal parasite infections are a huge burden on human and animal health; however, there are few studies investigating the role of the hologenome during parasite infections. We address this gap in the largest multi-omics fish microbiota study to date using natural cestode infection of farmed Atlantic salmon. We find a clear association between cestode infection, salmon lifetime growth, and perturbation of the salmon gut microbiota. Furthermore, we provide the first evidence that the genetic background of the host may partly determine how the gut microbiota changes during parasite-associated dysbiosis. Our study therefore highlights the value of a hologenomic approach for gaining a more in-depth understanding of parasitism.


Subject(s)
Cestode Infections , Gastrointestinal Microbiome , Parasitic Diseases , Salmo salar , Humans , Animals , Gastrointestinal Microbiome/genetics , Aquaculture , Dysbiosis/veterinary
2.
EFSA J ; 21(Suppl 1): e211005, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38047121

ABSTRACT

Traditionally applied methodology in environmental risk assessment (ERA) has fallen out of step with technological advancements and regulatory requirements, challenging effectiveness and accuracy of the assessments. Extensive efforts have been focused towards a transition to a more data-driven and mechanistically-based next generation risk assessment. Metabolomics can produce detailed and comprehensive molecular insight into affected biochemical processes. Combining metabolomics with environmental toxicology can help to understand the mechanisms and/or modes of action underlying toxicity of environmental pollutants and inform adverse outcome pathways, as well as facilitate identification of biomarkers to quantify effects and/or exposure. This Technical Report describes the activities and work performed within the frame of the European Food Risk Assessment Fellowship Programme (EU-FORA), implemented at the section 'Environmental Chemistry and Toxicology' at the Department of Environmental Science at Aarhus University in Denmark with synergies to an ongoing H2020 RIA project 'EndocRine Guideline Optimisation' (ERGO). In accordance with the 'training by doing' principles of the EU-FORA, the fellowship project combined the exploration of the status of scientific discussion on methodology in ERA through literature study with hands-on training, using the metabolomics analysis pipeline established at Aarhus University. For the hands-on training, an amphibian metamorphosis assay (OECD test no.231) was used as a proof-of-concept toxicometabolomics study case. Both a targeted biomarker - and an untargeted metabolomics approach was applied.

3.
Food Res Int ; 173(Pt 2): 113450, 2023 11.
Article in English | MEDLINE | ID: mdl-37803779

ABSTRACT

In this study, we aimed to evaluate the impact of consuming refined mackerel oil (MO) from rest raw material on hepatic fat accumulation, glucose tolerance, and metabolomic changes in the liver from male C57BL/6N mice. The mice were fed either a Western diet (WD) or a chow diet, with 30 g or 60 g MO per kg of diet (3% or 6%) for 13 weeks. Body weight, energy intake, and feed efficiency were monitored throughout the experiment. A glucose tolerance test was conducted after 11 weeks, and metabolomic analyses of the liver were performed at termination. Inclusion of MO in the WD, but not in the chow diet, led to increased liver weight, hepatic lipid accumulation, elevated fasting blood glucose, reduced glucose tolerance, and insulin sensitivity. Hepatic levels of eicosapentaenoic and docosahexaenoic acid increased, but no changes in levels of saturated and monounsaturated fatty acids were observed. The liver metabolomic profile was different between mice fed a WD with or without MO, with a reduction in choline ether lipids, phosphatidylcholines, and sphingomyelins in mice fed MO. This study demonstrates that supplementing the WD, but not the chow diet, with refined MO accelerates accumulation of hepatic fat droplets and negatively affects blood glucose regulation. The detrimental effects of supplementing a WD with MO were accompanied by increased fat digestibility and overall energy intake, and lower levels of choline and choline-containing metabolites in liver tissue.


Subject(s)
Diet, Western , Perciformes , Mice , Male , Animals , Diet, Western/adverse effects , Blood Glucose/metabolism , Choline/metabolism , Mice, Inbred C57BL , Liver/metabolism , Fatty Acids, Monounsaturated
4.
Food Res Int ; 169: 112927, 2023 07.
Article in English | MEDLINE | ID: mdl-37254353

ABSTRACT

Alternative feed ingredients for farmed salmon are warranted due to increasing pressure on wild fish stocks. As locally farmed blue mussels may represent an environmentally sustainable substitute with a lower carbon footprint, we aimed to test the potential and safety of substituting fish meal with blue mussel meal in feed for Atlantic salmon. Salmon were fed diets in which fish meal was partially replaced with blue mussel meal in increments, accounting for up to 13.1 % of the ingredients. Fillets from the salmon were subsequently used to prepare obesity-promoting western diets for a 13-weeks mouse feeding trial. In a second mouse trial, we tested the effects of inclusion of up to 8% blue mussel meal directly in a meat-based western diet. Partial replacement of fish meal with blue mussel meal in fish feed preserved the n-3 polyunsaturated fatty acid (PUFA) content in salmon fillets. The observed blue mussel-induced changes in the fatty acid profiles in salmon fillets did not translate into similar changes in the livers of mice that consumed the salmon, and no clear dose-dependent responses were found. The relative levels of the marine n-3 fatty acids, EPA, and DHA were not reduced, and the n-3/n-6 PUFA ratios in livers from all salmon-fed mice were unchanged. The inclusion of blue mussel meal in a meat-based western diet led to a small, but dose-dependent increase in the n-3/n-6 PUFA ratios in mice livers. Diet-induced obesity, glucose intolerance, and hepatic steatosis were unaffected in both mice trials and no blue mussel-induced adverse effects were observed. In conclusion, our results suggest that replacing fish meal with blue mussel meal in salmon feed will not cause adverse effects in those who consume the salmon fillets.


Subject(s)
Fatty Acids, Omega-3 , Mytilus edulis , Salmo salar , Animals , Mice , Diet, Western , Fatty Acids/metabolism , Mytilus edulis/metabolism , Obesity , Salmo salar/metabolism , Seafood
5.
EFSA J ; 20(Suppl 2): e200917, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36531271

ABSTRACT

Risk and risk-benefit assessments of food are complex exercises, in which access to and use of several disconnected individual stand-alone databases is required to obtain hazard and exposure information. Data obtained from such databases ideally should be in line with the FAIR principles, i.e. the data must be Findable, Accessible, Interoperable and Reusable. However, often cases are encountered when one or more of these principles are not followed. In this project, we set out to assess if existing commonly used databases in risk assessment are in line with the FAIR principles. We also investigated how access, interoperability and reusability of data could be improved. We used the OpenFoodTox and the Seafood database as examples and showed how commonly used freely available open-source tools and repositories can be implemented in the data extraction process of risk assessments to increase data reusability and crosstalk across different databases.

6.
Int J Mol Sci ; 23(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36293098

ABSTRACT

Methylmercury (MeHg) is a well-known environmental contaminant, particularly harmful to the developing brain. The main human dietary exposure to MeHg occurs through seafood consumption. However, seafood also contains several nutrients, including selenium, which has been shown to interact with MeHg and potentially ameliorate its toxicity. The aim of this study was to investigate the combined effects of selenium (as selenomethionine; SeMet) and MeHg on mercury accumulation in tissues and the effects concomitant dietary exposure of these compounds exert on the hippocampal proteome and transcriptome in mice. Adolescent male BALB/c mice were exposed to SeMet and two different doses of MeHg through their diet for 11 weeks. Organs, including the brain, were sampled for mercury analyses. Hippocampi were collected and analyzed using proteomics and transcriptomics followed by multi-omics bioinformatics data analysis. The dietary presence of SeMet reduced the amount of mercury in several organs, including the brain. Proteomic and RNA-seq analyses showed that both protein and RNA expression patterns were inversely regulated in mice receiving SeMet together with MeHg compared to MeHg alone. Several pathways, proteins and RNA transcripts involved in conditions such as immune responses and inflammation, oxidative stress, cell plasticity and Alzheimer's disease were affected inversely by SeMet and MeHg, indicating that SeMet can ameliorate several toxic effects of MeHg in mice.


Subject(s)
Mercury , Methylmercury Compounds , Selenium , Male , Adolescent , Animals , Humans , Mice , Methylmercury Compounds/toxicity , Methylmercury Compounds/analysis , Selenomethionine/pharmacology , Transcriptome , Selenium/metabolism , Proteome/metabolism , Proteomics , Mice, Inbred BALB C , Diet , Antioxidants , Hippocampus/metabolism , RNA
7.
Nutrients ; 11(5)2019 May 23.
Article in English | MEDLINE | ID: mdl-31126082

ABSTRACT

Low-fat diets and energy restriction are recommended to prevent obesity and to induce weight loss, but high-protein diets are popular alternatives. However, the importance of the protein source in obesity prevention and weight loss is unclear. The aim of this study was to investigate the ability of different animal protein sources to prevent or reverse obesity by using lean or obese C57BL/6J mice fed high-fat/high-protein or low-fat diets with casein, cod or pork as protein sources. Only the high-fat/high-protein casein-based diet completely prevented obesity development when fed to lean mice. In obese mice, ad libitum intake of a casein-based high-fat/high-protein diet modestly reduced body mass, whereas a pork-based high-fat/high-protein diet aggravated the obese state and reduced lean body mass. Caloric restriction of obese mice fed high-fat/high-protein diets reduced body weight and fat mass and improved glucose tolerance and insulin sensitivity, irrespective of the protein source. Finally, in obese mice, ad libitum intake of a low-fat diet stabilized body weight, reduced fat mass and increased lean body mass, with the highest loss of fat mass found in mice fed the casein-based diet. Combined with caloric restriction, the casein-based low-fat diet resulted in the highest loss of fat mass. Overall, the dietary protein source has greater impact in obesity prevention than obesity reversal.


Subject(s)
Adiposity , Animal Feed , Blood Glucose/metabolism , Caloric Restriction , Diet, Fat-Restricted , Diet, High-Protein , Dietary Proteins/administration & dosage , Obesity/diet therapy , Animals , Body Mass Index , Dietary Proteins/metabolism , Disease Models, Animal , Insulin/blood , Male , Mice, Inbred C57BL , Obesity/blood , Obesity/physiopathology , Weight Loss
8.
PLoS One ; 14(1): e0211128, 2019.
Article in English | MEDLINE | ID: mdl-30682099

ABSTRACT

Ethoxyquin (EQ; 6-Ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline) has been used as an antioxidant in feed components for pets, livestock and aquaculture. However, possible risks of EQ used in aquafeed for fish health have not yet been characterized. The present study investigated the toxicity and dose-response of subchronic dietary EQ exposure at doses ranging from 41 to 9666 mg EQ/kg feed in Atlantic salmon (Salmo salar L.). Feed at concentrations higher than 1173 mg EQ/kg were rejected by the fish, resulting in reduced feed intake and growth performance. No mortality was observed in fish exposed to any of the doses. A multi-omic screening of metabolome and proteome in salmon liver indicated an effect of dietary EQ on bioenergetics pathways and hepatic redox homeostasis in fish fed concentrations above 119 mg EQ/kg feed. Increased energy expenditure associated with an upregulation of hepatic fatty acid ß-oxidation and induction and carbohydrate catabolic pathways resulted in a dose-dependent depletion of intracytoplasmic lipid vacuoles in liver histological sections, decreasing whole body lipid levels and altered purine/pyrimidine metabolism. Increased GSH and TBARS in the liver indicated a state of oxidative stress, which was associated with activation of the NRF2-mediated oxidative stress response and glutathione-mediated detoxification processes. However, no oxidative DNA damage was observed. As manifestation of altered energy metabolism, the depletion of liver intracytoplasmic lipid vacuoles was considered the critical endpoint for benchmark dose assessment, and a BMDL10 of 243 mg EQ/kg feed was derived as a safe upper limit of EQ exposure in Atlantic salmon.


Subject(s)
Eating/drug effects , Energy Metabolism/drug effects , Ethoxyquin/pharmacology , Lipid Metabolism/drug effects , Liver/metabolism , Salmo salar/metabolism , Animal Feed , Animals , DNA Damage , Dose-Response Relationship, Drug
9.
Food Chem Toxicol ; 118: 608-625, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29883783

ABSTRACT

The use of the synthetic antioxidant ethoxyquin (6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline; EQ) in animal feed results in the presence of EQ residues and metabolites, including the EQ dimer (1,8'-bi(6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline); EQDM) in animal food products. To investigate the toxicity and dose-response of dietary exposure to EQDM, male BALB/c mice were exposed to one of six dietary doses of EQDM, ranging from 0.015 to 518 mg/kg body weight/day for 90 days. Doses above 10 mg/kg body weight/day affected whole body lipid metabolism resulting in increased liver weights and decreased adipose tissue mass. Metabolomic screening of livers revealed alterations indicating incomplete fatty acid ß-oxidation and hepatic oxidative stress. Histopathological evaluation and biochemical analyses of the liver confirmed the development of microvesicular steatosis and activation of the glutathione system. Hepatic protein profiling and pathway analyses suggested that EQDM-induced responses are mediated through activation of CAR/PXR nuclear receptors and induction of a NRF2-mediated oxidative stress response. Based on the development of microvesicular steatosis as the critical endpoint, a Reference Point for dietary EQDM exposure was established at 1.1 mg/kg body weight/day (BMDL10) from benchmark dose modelling. Applying an uncertainty factor of 200, an Acceptable Daily Intake of 0.006 mg EQDM/kg body weight was proposed.


Subject(s)
Dietary Exposure , Ethoxyquin/toxicity , Fatty Liver/chemically induced , Animals , Dimerization , Dose-Response Relationship, Drug , Ethoxyquin/chemistry , Male , Mice, Inbred BALB C , No-Observed-Adverse-Effect Level , Toxicity Tests, Subchronic
10.
Nutrients ; 10(6)2018 May 30.
Article in English | MEDLINE | ID: mdl-29848963

ABSTRACT

A large fraction of the n-3 polyunsaturated fatty acids (PUFAs) in cod fillet is present in the form of phospholipids (PLs). Freezing initiates hydrolysis of the PLs present in the fillet. Here, we compared the effects of Western diets based on frozen cod, fresh cod or pork with a diet based on casein in male C57BL/6J mice fed for 12 weeks at thermoneutrality. Diets based on fresh cod contained more PL-bound n-3 PUFAs (3.12 mg/g diet) than diets based on frozen cod (1.9 mg/g diet). Mice fed diets containing pork and fresh cod, but not frozen cod, gained more body and fat mass than casein-fed mice. Additionally, the bioavailability of n-3 PUFAs present in the cod fillets was not influenced by storage conditions. In a second experiment, diets with pork as the protein source were supplemented with n-3 PUFAs in the form of PL or triacylglycerol (TAG) to match the levels of the diet containing fresh cod. Adding PL-bound, but not TAG-bound, n-3 PUFAs, to the pork-based diet increased body and fat mass gain. Thus, supplementation with PL-bound n-3 PUFAs did not protect against, but rather promoted, obesity development in mice fed a pork-based diet.


Subject(s)
Diet, Fat-Restricted , Food Storage , Frozen Foods/analysis , Gadus morhua , Obesity/prevention & control , Phospholipids/analysis , Seafood/analysis , Adiposity , Animals , Diet, Western/adverse effects , Dietary Fats/administration & dosage , Dietary Fats/analysis , Dietary Fats/metabolism , Digestion , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-3/analysis , Freeze Drying , Male , Meat/adverse effects , Mice, Inbred C57BL , Nutritive Value , Obesity/etiology , Sus scrofa , Weight Gain
11.
Food Chem Toxicol ; 97: 411-423, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27717803

ABSTRACT

Oily fish, a source of long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs), may contain persistent organic pollutants (POPs), including α-hexabromocyclododecane (α-HBCD). In experimental studies, marine LC n-3 PUFAs ameliorate fatty liver development while HBCD exposure was found to cause liver fatty acid (FA) changes. The present study investigated interactions of FAs and α-HBCD in juvenile female BALB/c mice using a factorial design. Mice (n = 48) were exposed for 28 days to a low (100 µg*kg body weight (BW)-1*day-1) or high dose (100 mg*kg BW-1*day-1) of α-HBCD in diets with or without LC n-3 PUFAs. High dose α-HBCD affected whole body lipid metabolism leading to changes in body weight and composition, and pathological changes in hepatic histology, which surprisingly were aggravated by dietary LC n-3 PUFAs. Hepatic FA profiling and gene expression analysis indicated that the dietary modulation of the hepatotoxic response to the high dose of α-HBCD was associated with differential effects on FA ß-oxidation. Our results suggest that in a juvenile mouse model, marine FAs accentuate hepatotoxic effects of high dose α-HBCD. This highlights that the background diet is a critical variable in the risk assessment of POPs and warrants further investigation of dietary mediated toxicity of food contaminants.


Subject(s)
Diet/adverse effects , Fatty Acids/toxicity , Hydrocarbons, Brominated/toxicity , Liver/drug effects , Animals , Dose-Response Relationship, Drug , Female , Food Contamination/analysis , Gene Expression Regulation/drug effects , Liver/metabolism , Mice , Mice, Inbred BALB C , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Seafood
12.
J Nutr Biochem ; 27: 307-16, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26507541

ABSTRACT

Accumulation of persistent organic pollutants (POPs) has been linked to adipose tissue expansion. As different nutrients modulate adipose tissue development, we investigated the influence of dietary composition on POP accumulation, obesity development and related disorders. Lifespan was determined in mice fed fish-oil-based high fat diets during a long-term feeding trial and accumulation of POPs was measured after 3, 6 and 18months of feeding. Further, we performed dose-response experiments using four abundant POPs found in marine sources, PCB-153, PCB-138, PCB-118 and pp'-DDE as single congeners or as mixtures in combination with different diets: one low fat diet and two high fat diets with different protein:sucrose ratios. We measured accumulation of POPs in adipose tissue and liver and determined obesity development, glucose tolerance, insulin sensitivity and hepatic expression of genes involved in metabolism of xenobiotics. Compared with mice fed diets with a low protein:sucrose ratio, mice fed diets with a high protein:sucrose ratio had significantly lower total burden of POPs in adipose tissue, were protected from obesity development and exhibited enhanced hepatic expression of genes involved in metabolism and elimination of xenobiotics. Exposure to POPs, either as single compounds or mixtures, had no effect on obesity development, glucose tolerance or insulin sensitivity. In conclusion, this study demonstrates that the dietary composition of macronutrients profoundly modulates POP accumulation in adipose tissues adding an additional parameter to be included in future studies. Our results indicate that alterations in macronutrient composition might be an additional route for reducing total body burden of POPs.


Subject(s)
Adipose Tissue/metabolism , Diet , Environmental Pollutants/pharmacokinetics , Organic Chemicals/pharmacokinetics , Animals , Female , Mice , Mice, Inbred C57BL
13.
J Nutr Biochem ; 26(6): 585-95, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25776459

ABSTRACT

Introduction of vegetable ingredients in fish feed has affected the fatty acid composition in farmed Atlantic salmon (Salmo salar L). Here we investigated how changes in fish feed affected the metabolism of mice fed diets containing fillets from such farmed salmon. We demonstrate that replacement of fish oil with rapeseed oil or soybean oil in fish feed had distinct spillover effects in mice fed western diets containing the salmon. A reduced ratio of n-3/n-6 polyunsaturated fatty acids in the fish feed, reflected in the salmon, and hence also in the mice diets, led to a selectively increased abundance of arachidonic acid in the phospholipid pool in the livers of the mice. This was accompanied by increased levels of hepatic ceramides and arachidonic acid-derived pro-inflammatory mediators and a reduced abundance of oxylipins derived from eicosapentaenoic acid and docosahexaenoic acid. These changes were associated with increased whole body insulin resistance and hepatic steatosis. Our data suggest that an increased ratio between n-6 and n-3-derived oxylipins may underlie the observed marked metabolic differences between mice fed the different types of farmed salmon. These findings underpin the need for carefully considering the type of oil used for feed production in relation to salmon farming.


Subject(s)
Animal Feed , Arachidonic Acid/metabolism , Ceramides/metabolism , Liver/metabolism , Oxylipins/metabolism , Salmo salar , Soybean Oil/administration & dosage , Alanine Transaminase/blood , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Arachidonic Acids/metabolism , Calcium-Binding Proteins , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Diet, Western , Docosahexaenoic Acids/metabolism , Eicosapentaenoic Acid/metabolism , Endocannabinoids/metabolism , Fatty Acids/blood , Fish Oils/administration & dosage , Glycerides/metabolism , Insulin/blood , Male , Metabolomics , Mice , Mice, Inbred C57BL , Polyunsaturated Alkamides , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, G-Protein-Coupled , Seafood , Tumor Necrosis Factors/genetics , Tumor Necrosis Factors/metabolism
14.
Chemosphere ; 84(3): 348-54, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21555145

ABSTRACT

Fish and seafood are important contributions to a healthy diet, but also contain persistent organic pollutants (POPs) like polybrominated diphenylethers (PBDEs) and polychlorinated biphenyls (PCBs). Discrepancies have been found between intake and accumulated levels of POPs, where fish consumers have had similar levels of POPs to the general population. Similarly fish oil consumption has been found to reduce accumulation of POPs. This study examined the accumulation of BDE47 or PCB153 in mice fed diets with different nutritional composition, using female mice with pre-weanling pups exposed through gestation and lactation. A fish-based diet was compared to a standard casein-based rodent diet. All diets had low background levels of environmental contaminants and were spiked with BDE47 or PCB153 to levels representing a realistic (∼0.004 µmol kg bw(-1) d) or a high dietary exposure (∼1.3 µmol kg bw(-1) d). Accumulation of BDE47 or PCB153 in offspring tissues after 18d lactation reflected the maternal exposure levels. However, the pups of dams fed a fish-based diet had consistently lower BDE47 accumulation in liver, fat and stomach than pups from casein-fed dams. Similarly the pups of dams fed a high dose of PCB153 in a fish diet also accumulated less PCB153 than pups of the dams fed a casein diet, although not significant. In conclusion, the fish based diets seemed to reduce transfer of BDE47 and PCB153 from dams to pups. The study highlights that in-depth knowledge about nutritional impact on toxicokinetics is of great interest to vulnerable consumers.


Subject(s)
Diet/methods , Environmental Pollutants/metabolism , Fishes , Maternal Exposure , Polybrominated Biphenyls/metabolism , Animals , Animals, Newborn , Diet/statistics & numerical data , Female , Gastric Mucosa/metabolism , Halogenated Diphenyl Ethers , Humans , Liver/metabolism , Mice
15.
Behav Brain Funct ; 7: 3, 2011 Jan 13.
Article in English | MEDLINE | ID: mdl-21232145

ABSTRACT

BACKGROUND: Polychlorinated biphenyls (PCBs) are widespread in the environment, human food and breast milk. Seafood is known to contain nutrients beneficial for the normal development and function of the brain, but also contaminants such as PCBs which are neurotoxic. Exposure to non-coplanar PCBs during brain development can disrupt spontaneous behaviour in mice and lead to hyperactive behaviour. Humans are chronically exposed to the highest relative levels of organochlorines in early childhood during brain development, though usually at doses which do not give clinical symptoms of toxicity. This study aimed to elucidate the developmental and behavioural effects of 2,2',4,4',5,5' hexachlorobiphenyl (PCB153) in mice, mimicking human exposure during gestation and lactation. METHODS: Environmentally relevant doses of PCB153 were added to the experimental diets. Feed concentrations were approximately 0.5, 6.5, and 1500 µg PCB153/kg feed, representing a realistic and a worst case scenario of frequent consumption of contaminated fish. The study also investigated the effects of maternal nutrition, i.e. a standard rodent diet versus a high inclusion of salmon. Mice pups were examined for physical- and reflex development, sensorimotor function and spontaneous behaviour from five days after birth until weaning. A selection of pups were followed until 16 weeks of age and tested for open field behaviour and the acoustic startle response (ASR) with prepulse inhibition (PPI). Blood thyroid hormones and liver enzymes, blood lipids and PCB153 content in fat were examined at 16 weeks. Statistical analyses modelled the three way interactions of diet, PCB exposure and litter size on behaviour, using generalized linear models (GLM) and linear mixed effect models (LME). The litter was used as a random variable. Non-parametric tests were used for pair wise comparisons of biochemical analyses. RESULTS: Litter size consistently influenced pup development and behaviour. Few lasting PCB153 related changes were observed, but results indicated effects on synchronization of physical development. Perinatal PCB153 exposure appeared to reduce habituation and cause aggression in males, though not statistically significant. CONCLUSIONS: Litter size and maternal diet influenced physical development and function more than PCB153 in perinatally exposed mouse pups and supports the developmental importance of maternal care and the social environment.


Subject(s)
Behavior, Animal/drug effects , Maternal Exposure/adverse effects , Polychlorinated Biphenyls/toxicity , Prenatal Exposure Delayed Effects/psychology , Adipose Tissue/chemistry , Animals , Dose-Response Relationship, Drug , Exploratory Behavior/drug effects , Female , Lipids/blood , Litter Size , Liver/enzymology , Male , Mice , Mice, Inbred BALB C , Polychlorinated Biphenyls/analysis , Pregnancy , Prenatal Exposure Delayed Effects/blood , Reflex, Startle/drug effects , Thyroid Hormones/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...